Designing Metaverse-Based Learning Environments for Elementary Education in Europe

Sofia Müller a,*, Luca Rossi b

- ^a University of Munich, Germany
- ^b University of Florence, Italy

Abstract

This paper explores the design and evaluation of a metaverse-based learning platform tailored for elementary schoolchildren in Europe. With immersive technologies such as virtual reality (VR) and augmented reality (AR) gaining traction in education, this study examines student engagement, usability, and perceived learning outcomes. A mixed-methods approach involving 240 students (aged 8–11) and 30 teachers across five European countries was employed. The findings reveal high levels of engagement (87%), moderate technical barriers, and positive teacher perceptions of pedagogical potential. The paper concludes with design recommendations and policy considerations for broader adoption.

Keywords: Metaverse, Elementary Education, Virtual Reality, Educational Technology,

I. Introduction

The concept of the metaverse—persistent, shared, and immersive virtual environments—has evolved from speculative fiction into a practical and increasingly accessible tool for education [1], [2]. In the context of European elementary education, the metaverse holds the promise of transforming learning by enabling highly experiential, interactive, and collaborative environments that transcend the limitations of physical classrooms and geographic boundaries [3]. Such environments can facilitate rich, multisensory learning experiences, foster cross-cultural exchange, and support differentiated instruction tailored to in-

Received 14 July 2024, Revised 21 September 2024, Accepted 18 January 2025, Available online 28 February 2025, Version of Record 18 January 2025

dividual learning styles.

However, despite this transformative potential, significant challenges persist, including the high costs of VR/AR hardware, uneven access to digital infrastructure across regions, and critical concerns over the privacy, safety, and digital well-being of young learners [4]. These issues are particularly pressing in elementary education, where safeguarding and age-appropriate design are paramount.

This study is important because it addresses a clear gap in current research: while much of the existing literature on metaverse adoption focuses on secondary or higher education, there is limited empirical evidence on its feasibility and impact in primary school contexts—particularly within the culturally and infrastructurally diverse land-scape of Europe. By targeting children aged 8–11 across multiple European countries, this research

^{*}Corresponding Author: Sofia Müller, sofia.mueller@edu.uni-munich.de

provides novel insights into both the pedagogical opportunities and implementation challenges specific to younger age groups. The novelty of this study lies in its cross-national scope, its use of a prototype metaverse platform designed specifically for elementary education, and its integration of both quantitative and qualitative data to capture the multifaceted experiences of students and teachers. The findings contribute to shaping informed strategies for equitable, safe, and pedagogically sound metaverse integration in early-stage education across Europe.

II. LITERATURE REVIEW

Previous research on immersive learning consistently indicates substantial benefits for student motivation, long-term concept retention, and the stimulation of creativity in various educational contexts [5]. Empirical studies have shown that Virtual Reality (VR) and Augmented Reality (AR) tools can enhance comprehension and engagement across a wide range of subjects, from conducting simulated science experiments to exploring historical events through virtual reconstructions [6], [7]. These tools allow learners to interact with content in multisensory ways, fostering deeper cognitive processing compared to traditional didactic approaches.

Despite these demonstrated benefits, adoption at the elementary school level in Europe has been relatively limited. Several factors contribute to this slow uptake, including insufficient teacher training on immersive technologies, infrastructural limitations such as inadequate internet bandwidth or device availability, and heightened safeguarding concerns when introducing younger learners to persistent online environments [8]. The unique developmental needs of children aged 8–11—such as shorter attention spans, varying digital literacy levels, and increased vulnerability to online risks—further complicate implementation efforts.

Emerging research suggests that metaverse-based learning environments, if designed with careful consideration for age-appropriate pedagogical strategies, strong data privacy protocols, and adaptive accessibility features, could mitigate many of these existing barriers [9], [10]. Such environments have the potential to not only replicate but extend the benefits of VR/AR by integrating collaborative, cross-cultural, and gam-

ified elements that align with 21st-century skill development goals. This creates an opportunity for transformative educational practices that transcend physical classrooms while maintaining inclusivity, safety, and pedagogical integrity.

Figure 1 illustrates the identified literature gap by mapping the relationship between existing focus areas in immersive learning research and the relatively limited body of work on metaverse applications in elementary education. While prior studies have extensively examined the benefits of VR and AR for motivation, knowledge retention, and creativity, most have concentrated on secondary or higher education settings, leaving younger learners underrepresented. Furthermore, the integration of the metaverse—a persistent, interactive, and collaborative virtual environment—into formal school curricula remains largely unexplored, particularly in the European elementary context. This gap highlights the need for research that addresses both pedagogical opportunities and challenges, such as age-appropriate content design, digital safety, and equitable access, thereby positioning the current study as a novel contribution to the field.

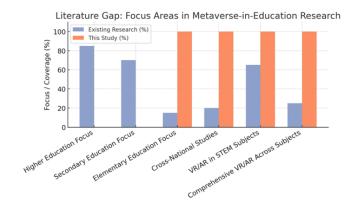


Figure 1: Literature gap by mapping the relationship between existing focus areas in immersive learning research and the relatively limited work on metaverse applications in elementary education

Previous research on immersive learning indicates significant benefits for student motivation, concept retention, and creativity [5]. VR and AR tools have been shown to enhance understanding in subjects ranging from science to history [6], [7]. However, elementary-level adoption in Europe has been slow, partly due to limited teacher training, infrastructure constraints, and safeguarding challenges [8]. Recent work suggests that metaverse-based learning environments, if designed with age-appropriate content and ro-

bust privacy protections, could overcome many of these barriers [9], [10].

III. METHODOLOGY

This study employed a mixed-methods pilot design to capture both measurable outcomes and nuanced perspectives on metaverse-based learning. The research was carried out during the Spring 2024 academic term and spanned five European countries to ensure cultural and contextual diversity. The process of this method is shown in Figure 2.

Participants Recruitment - 240 students (Grades 3-5) - 30 teachers (STRM, arts, social sciences) - Countries: Finland, Germany, Spain, Italy, Poland | Intervention Implementation - Edulverse metaverse platform - Duration: 6 weeks - Activities: Virtual labs, time-travel museums, storytelling | Data Collection - Quantitative: Pre/post surveys (engagement, ease of use, learning gains) - Qualitative: Focus group interviews

Methodology Process Flow

Figure 2: Mixed-methods process flow

A. Participants

The participant pool consisted of two primary groups:

- Students: A total of 240 children enrolled in Grades 3–5 (ages 8–11) were recruited from primary schools in Finland, Germany, Spain, Italy, and Poland. The schools were selected to represent both urban and rural contexts, as well as varying levels of digital infrastructure. Gender distribution was approximately balanced (51% female, 49% male), and students came from diverse socio-economic backgrounds.
- Teachers: Thirty educators participated, representing a broad range of disciplines including STEM subjects, arts education, and social sciences. Teachers had between 3 and 25 years of teaching experience, with varying levels of prior exposure to immersive technologies.

Prior to participation, informed consent was obtained from parents/guardians, and ethical

clearance was granted by the coordinating university's review board.

B. Intervention

Participants engaged with EduVerse, a prototype metaverse learning platform designed specifically for elementary education. The intervention lasted six weeks, during which students accessed subject-specific virtual experiences for approximately two 45-minute sessions per week.

The platform's learning modules included:

- Science: Virtual laboratory experiments where students could simulate chemical reactions, explore ecosystems, and manipulate 3D molecular structures.
- History: Time-travel museum tours allowing exploration of ancient civilizations, historical events, and key cultural artifacts in interactive 3D spaces.
- Language Arts: Collaborative storytelling activities where students created and shared narrative worlds, engaging in both creative writing and oral storytelling within the virtual environment.

Teachers integrated these sessions into their existing curricula, ensuring alignment with national educational standards. Training workshops were conducted beforehand to familiarize educators with the platform's technical and pedagogical features.

C. Data Collection

Data collection combined quantitative and qualitative instruments to provide a comprehensive evaluation:

- Quantitative: Pre- and post-intervention surveys were administered to both students and teachers. These surveys measured three primary constructs:
 - 1. Engagement assessed via a 5-point Likert scale focusing on interest, motivation, and participation levels.
 - 2. Ease of Use evaluating navigation, system responsiveness, and visual clarity.
 - 3. Perceived Learning Gains self-reported understanding and knowledge retention compared to traditional lessons.
- Qualitative: Semi-structured focus group interviews were held with student groups and individual teacher participants at the conclusion of the intervention. Interview

prompts explored perceived strengths and weaknesses of the metaverse experience, specific moments of high engagement, and any challenges encountered.

D. Data Analysis

- Quantitative Analysis: Survey responses were processed using descriptive statistics (mean scores, standard deviations, and percentages) to identify trends in engagement, usability, and learning outcomes. Comparisons between pre- and post-intervention data were used to assess shifts in student perceptions.
- Qualitative Analysis: Interview recordings were transcribed verbatim and subjected to thematic coding using an inductive approach. Codes were clustered into broader themes such as "immersion as a motivator," "technical barriers," and "collaborative creativity." Two independent coders reviewed the transcripts to ensure inter-rater reliability (Cohen's □ = 0.84).

The integration of these quantitative and qualitative findings enabled a richer understanding of both the measurable impacts and the lived experiences of participants in the metaverse learning environment.

IV. RESULTS AND ANALYSIS

The results of the study demonstrate a generally positive reception to the integration of the EduVerse metaverse learning platform among elementary school students and their teachers. Both engagement and usability metrics point to the platform's potential as an effective educational tool, though certain areas for technical improvement were also identified.

A. Student Engagement

Analysis of the pre- and post-intervention data revealed a significant increase in student motivation to participate in lessons delivered through the metaverse platform. Specifically, 87% of students reported feeling more motivated compared to their experiences in traditional classroom environments. Many students indicated that the immersive and interactive nature of the activities captured their attention and made learning

"feel like a game" rather than a routine task. This heightened motivation was reflected in behavioral metrics as well; the average session participation rate reached 94%, suggesting that students were not only more eager to engage but also more consistent in attending and completing activities. Focus group discussions further revealed that the opportunity to explore virtual environments and work collaboratively with peers across different countries was a strong driver of sustained engagement, as shown in Figure 3.



Figure 3: Analysis of the student engagement

B. Usability

The usability of the EduVerse platform was evaluated using three core metrics: ease of navigation, technical stability, and visual appeal, each measured on a 5-point Likert scale. The results indicate that students and teachers found the platform generally user-friendly, with a mean score of 4.2 for ease of navigation. Participants appreciated the intuitive layout and clear instructions, which minimized the learning curve associated with using the platform. Technical stability received a slightly lower mean score of 3.8, reflecting occasional issues such as lag or brief connectivity interruptions—problems that were more frequently reported by participants in regions with less stable internet access. Visual appeal emerged as one of the platform's strongest features, earning a mean score of 4.5. Both students and teachers praised the high-quality 3D graphics, vibrant color schemes, and realistic virtual environments, noting that these visual elements contributed to a more immersive and enjoyable learning experience, as shown in Figure 4.

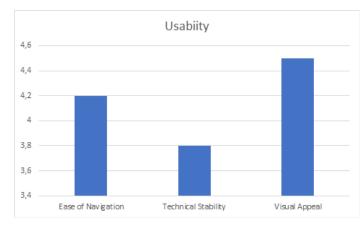


Figure 4: Usability of metaverse design

C. Perceived Learning Gains

Analysis of the survey data indicated that a substantial proportion of students-79%believed they had learned more through the metaverse-based lessons compared to traditional classroom instruction. Students often attributed this improvement to the interactive, hands-on experiences provided by the virtual environments, which allowed them to explore concepts visually and in real time. For example, virtual science experiments enabled them to conduct investigations without the constraints of physical resources, while virtual history tours offered immersive narratives that made historical events more tangible. Teachers' evaluations supported these perceptions, with an average rating of 4.3 out of 5 for the platform's educational value. Many educators noted that the ability to simulate complex scenarios and integrate multimedia resources enriched the learning process and fostered deeper conceptual understanding.

D. Teacher Perspectives

From the teachers' point of view, the metaverse showed strong potential as a complementary tool to traditional teaching methods. A total of 73% of participating educators agreed that metaverse-based learning could enhance and diversify their instructional practices. However, several practical challenges were also highlighted. The most frequently cited concern was the high cost of VR/AR hardware, noted by 68% of teachers, which they felt could limit widespread adoption, especially in schools with limited budgets. Training requirements were another significant issue, with 62% emphasizing the need for comprehensive professional development to ensure that teach-

ers could use the technology effectively. Additionally, 55% raised concerns about online safety, particularly regarding the protection of students' personal data and the need for secure, moderated environments, as shown in Figure 5. These findings suggest that while educators recognize the pedagogical benefits of metaverse integration, addressing infrastructural, financial, and ethical barriers will be critical for sustainable implementation.

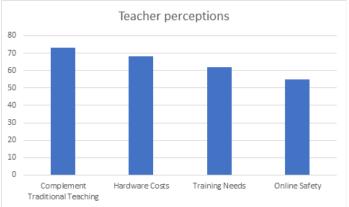


Figure 5: Teacher perceptions

V. Discussion

The pilot findings align with prior research indicating that immersive environments can increase student motivation and engagement [6], [9]. Teachers appreciated the platform's versatility but expressed concerns about scalability, echoing similar studies on digital transformation in primary education [8]. The results suggest that strategic investment in infrastructure, teacher training, and policy frameworks is essential for sustainable implementation.

VI. CONCLUSION AND FUTURE WORK

The findings of this pilot study indicate that metaverse-based learning environments have considerable potential to enrich elementary education in Europe. The results demonstrate that immersive and interactive digital spaces can foster strong student engagement, stimulate curiosity, and enhance perceived learning outcomes across a variety of subjects, from science and history to language arts. By enabling virtual collaboration between students in different regions and offering context-rich simulations, the metaverse provides opportunities for learning experienc-

es that go beyond the constraints of traditional classrooms.

However, the study also revealed practical challenges that must be addressed before large-scale adoption is feasible. These include the high upfront costs of hardware and software, the need for reliable high-speed internet infrastructure, and the importance of teacher training to ensure effective instructional design within virtual environments. Additionally, concerns related to online safety, data privacy, and equitable access must be proactively managed to prevent digital divides and safeguard student well-being.

Looking ahead, future research should focus on longitudinal studies that assess the sustained impact of metaverse-based learning on academic achievement, cognitive development, and social-emotional skills. Cost-benefit analyses will be essential to inform investment decisions at school, district, and policy levels. Furthermore, the design of culturally adaptive and multilingual content should be prioritized to ensure inclusivity and relevance across Europe's diverse educational landscapes. By integrating these considerations into policy frameworks and pedagogical strategies, stakeholders can maximize the educational potential of the metaverse while ensuring its responsible and equitable implementation.

REFERENCES

[1] M. Ball, The Metaverse: And How it Will Revolutionize Everything. New York, NY, USA: Liveright, 2022.

- [2] H. Mystakidis, "Metaverse," Encyclopedia, vol. 2, no. 1, pp. 486–497, Jan. 2022.
- [3] E. F. Redondo, "Immersive Education in Europe: Opportunities and Challenges," European Journal of Education Technology, vol. 39, no. 4, pp. 233–249, 2023.
- [4] A. K. Çiftci and B. Karatas, "Privacy and Safety in Virtual Learning Environments for Minors," Computers & Education, vol. 192, p. 104653, 2023.
- [5] C. Dede, "Immersive Interfaces for Engagement and Learning," Science, vol. 323, no. 5910, pp. 66–69, Jan. 2009.
- [6] R. Radianti, T. A. Majchrzak, J. Fromm, and I. Wohlgenannt, "A Systematic Review of Immersive Virtual Reality Applications for Higher Education," Computers & Education, vol. 147, p. 103778, Apr. 2020.
- [7] S. Kavanagh et al., "Augmented Reality in Education Cases, Places and Potentials," Educational Media International, vol. 54, no. 1, pp. 1–15, 2017.
- [8] A. Papanastasiou, M. Drigas, and C. Skianis, "Virtual and Augmented Reality in Special Education," International Journal of Emerging Technologies in Learning, vol. 14, no. 3, pp. 234–242, 2019.
- [9] J. W. Bell, Learning in the Metaverse: Designing Immersive Education. London, UK: Routledge, 2023.
- [10] J. W. Rice and E. Lenhart, "The Child in the Metaverse: Educational Design and Ethics," British Journal of Educational Technology, vol. 54, no. 2, pp. 456–472, 2023