
ISSN 2964-5387 (online)
Vol 3, No 1, 2024

1

International Journal of Educational Technology and Artificial Intelligence

I. Introduction

Images can be described in several ways. When
using a raster-display, the image is defined by a
set of intensities for pixel positions on the display
[1].. Images are complete objects, such as trees,
furniture, and others that are placed at certain co-
ordinates in the scene. The shape and color of an
object can be defined by an array of pixels or a
set of basic geometric structures, such as straight
lines and colored areas of polygons.

 Scenes display images by loading an array
of pixels into the frame buffer or by converting
a scan of a specified graphic geometry into a pix-
el pattern. Graphics programming packages are
equipped with functions to express scenes in the
form of basic geometric structures called output
primitives by inputting these primitive outputs

Visualizing the Digital Differential Analyzer
(DDA) algorithm using Adobe Animate

Monica Troka
University of Almeria, Spain, moniktroka@gmail.com

Abstract

This research presents an innovative approach to visualizing the Digital Differential
Analyzer (DDA) algorithm using Adobe Animate, a versatile tool known for its animation
and graphics capabilities. The Digital Differential Analyzer is a fundamental algorithm in
computer graphics, and our work focuses on creating an engaging and educational vi-
sualization that demystifies its step-by-step execution.The project begins by designing
a comprehensive storyboard that outlines the key components and stages of the DDA
algorithm. Leveraging Adobe Animate’s user-friendly interface, we implement frame-
by-frame animations that dynamically illustrate the algorithm’s progression. Each frame
depicts a specific step in the DDA process, with graphical elements representing points,
lines, and the calculated variables involved in drawing a line.The visualization incor-
porates interactive elements, allowing users to control parameters such as slope and
starting coordinates. By utilizing Adobe Animate’s scripting capabilities, we enable re-
al-time updates and dynamic feedback, enhancing user engagement and understand-
ing. The inclusion of sliders, buttons, and dynamic text labels empowers users to ac-
tively manipulate and observe the algorithm in action.

Keywords: DDA algorithm, graphic primitive, image, visualization

as more more complex structures [2]. Each out-
put primitive has coordinate data and other infor-
mation about how the object is displayed on the
screen. Points and straight lines are the simplest
geometric shapes of image components. Promis-
ive outputs that can be used to form images in-
clude circles, spline curves, conics, and others.

We will first discuss the image formation pro-
cedure by examining an algorithm that displays
output primitives in two dimensions. In this chap-
ter we also study how primitive output functions
are used in graphics application packages.

A. Points and Lines

Point formation is carried out by converting a
coordinate position with an application program
into a certain operation using output equipment.
With a CRT monitor, a beam of electrons appears
and disappears to light the phosphor. How the
electron beam determines the position of the
point depends on the display technology used.

Received 11 September 2023, Revised 28 Octobrer 2023,
Accepted 28 October 2023, Available online 5 February
2024, Version of Record 28 October 2023.

ISSN 2964-5387 (online)
Vol 3, No 1, 2024

2

International Journal of Educational Technology and Artificial Intelligence

The random-scan (vector) system stores point
formation instructions in the display list and the
coordinate values determine the position of the
electron beam towards the phosphor layer on the
screen. For black and white raster scans, a point
is determined by assigning a value of 1 to a cer-
tain position on the screen. In the RGB system,
the intensity color code for pixel positions on the
screen is stored in the frame buffer.

Lines are created by determining the position
of points between the start and end points of a
line [3]. Then, the output equipment creates lines
according to the positions of these points. For ana-
log equipment, such as plotters and random-scan
displays, straight lines can be produced smooth-
ly. Meanwhile, on digital equipment, straight
lines are produced by setting discrete points be-
tween the start and end points. The position of
a discrete point along a straight line can be cal-
culated from the equation of that line. Point cal-
culations that produce fractional values, such as
(5.37, 10.78) are converted to pixel positions (5,
11). Rounding the coordinate values to an integer
results in a line displayed on the screen resem-
bling a ladder image, as in Figure 1. The smooth-
ness of the display on the screen will depend on
the resolution used.

Figure 1 A line that is genaerated by pixels

Pixel positions can be described according
to scan-line values and column values (pixel
positions made perpendicular to the scan-line).
The scan-line value starts with 0 at the bottom
of the screen, and the pixel column starts with
0 from the left of the screen. To determine the
value of a point, a basic procedure can be used
where x is the pixel column value and y is the
scan-line value, as follows:

setPixel (x, y)

If the x and y values have been stored in the
frame buffer, you can display them on the screen
using basic functions

getPixel (x, y)

B. Line Formation Algorithm

The equation of the line according to Cartesian
coordinates is

y = m . x + b

where m is the slope of the line formed from
two points, namely (x1, y1) and (x2, y2) as can be
seen in Figure 3.3. To add x along the line, name-
ly dx, you will get an increase in y of

dy =m .dx

In a raster system, lines are formed based on
pixels, with step sizes in the horizontal and ver-
tical directions. Thus, the position of each pixel
must be determined by a discrete position value
or something close to it.

DDA Algorithm

Digital Differential Analyzer (DDA) is a line
formation algorithm based on dx and dy calcula-
tions, using the formula dy = m.dx. Lines are cre-
ated by determining two endpoints, namely the
start point and the end point. Each coordinate of
the point that forms the line is obtained from cal-
culations, then converted into an integer value.

The steps to form a line according to the DDA
algorithm are as follows:

1. 	 Determine the two points that will be con-
nected to form a line.

2. 	 Determine one of the points as the starting
point (x0, y0) and end point (x1, y1).

3. 	 Calculate dx = x1- x0, and dy = y1- y0.
4. 	 Determine the step, namely the maximum

distance between adding x and y values,
by:
- 	 If the absolute value of dx is greater than

the absolute value of dy, then step = ab-
solute of dx

- 	 If not, then step = absolute of dy
5. 	 Calculate the additional pixel coordinates,

namely x_increment = dx/step, and y_in-
crement = dy/step.

6. 	 Next coordinates (x + x_increment, y + y_
increment)

7. 	 The pixel position on the screen is deter-
mined by rounding the coordinate values.

8. 	 Repeat numbers 6 and 7 to determine the
next pixel position, until x = x1 and y = y1.

ISSN 2964-5387 (online)
Vol 3, No 1, 2024

3

International Journal of Educational Technology and Artificial Intelligence

II. Method

Creating a visualization of the Digital Differ-
ential Analyzer (DDA) algorithm using Adobe
Animate [4] involves leveraging the software’s
animation and graphics capabilities. Adobe An-
imate is well-suited for this task, providing a us-
er-friendly interface for designing interactive and
visually appealing content. Here’s a step-by-step
exploration of how you could approach visual-
izing the DDA algorithm using Adobe Animate:

Step 1: Storyboard Design

Before diving into Adobe Animate, plan a sto-
ryboard [5] that outlines the key steps and visual
elements of the DDA algorithm. Consider how
each frame or scene will depict the progression
of the algorithm, from initializing variables to
drawing the line.

Step 2: Graphics and Animation

 Canvas Setup:
 - Open Adobe Animate and create a new

project. Set up your canvas size and back-
ground.

 Basic Line Drawing:
 - Use Adobe Animate’s drawing tools to cre-

ate a simple coordinate system. Design a
point or small line to represent the initial
pixel on the screen.

 Frame-by-Frame Animation:
 - Utilize the timeline to create frames that

represent each step of the DDA algorithm.
 - Gradually move or duplicate elements to

simulate the progression of drawing the
line.

 Variables and Labels:
 - Integrate text labels and dynamic fields to

display the values of variables involved in
the algorithm (e.g., x, y, slope).

Step 3: Interaction (Optional)

 User Interaction:
 - Implement interactivity to allow users to

control aspects of the DDA algorithm. This
could include sliders for adjusting line pa-
rameters or buttons to step through the al-
gorithm.

Step 4: Advanced Visuals (Optional)

 Color and Styling:
 - Enhance visual appeal by incorporating

color gradients, different line styles, or
shading.

Step 5: Testing and Refinement

 User Feedback:
 - Gather feedback from users or colleagues to

identify areas for improvement.

By following these steps, you can leverage

Adobe Animate to create an engaging and infor-
mative visualization of the Digital Differential
Analyzer algorithm. This approach combines an-
imation, interactivity, and advanced graphics to
enhance the learning experience for users inter-
ested in understanding the intricacies of the DDA
algorithm.

III. Results and Discussion
To illustrate how to develop multimedia

application that contains algorithm visualization
in Adobe Animate, the first step is to define the
learning objectives [7]. The tutorial involves
many topics such as graphic systems, input and
output primitives, and graphic programming or
scripting.

Figure 3. Navigation structure

The next stepis establishes lateral thought
processes, helping to break down the navigation
structures that are usually embedded in
traditional approaches to course delivery.
Then, it can result in an overview based on
quite abstract design, which in turn generates

geometric structure, referred to as output primitives. Output
primitive is displayed. Output primitive is specific coordinate
data and other information that is input how the object is to be
displayed. Simple output primitives are straight line, and it is
the simplest geometric components of pictures. Additional
output primitives that can be used to construct a picture
include lines, circles and other conic sections, quadric
surfaces, line, curves and surfaces, polygon color areas, and
character strings.

Figure 1. (left) Section of a display screen where a straight line segment is to

be plotted

Figure 2. (right) Section of a display screen where a negative slope line
segment is to be plotted, starting from the pixel at column 50

Line drawing is accomplished by calculating intermediate
positions along the line path between two specified endpoint
positions. Some pixels are created in the position between the
endpoints [5] .

Bresenham's line algorithm is a line algorithm which
calculates either X or Y coordinate, and using only
incremental integer calculations to produce lines, circles and
other curves. Figures 1 and 2 illustrate sections of a display
screen where straight line segments are to be drawn. The
vertical axes show scan-line positions, and the horizontal
axes identify pixel columns. Sampling at unit x intervals in
these examples, we need to decide which of two possible
pixel positions is closer to the line path at each sample step.
Starting from the left endpoint shown in Figure 2, we need to
determine at the next sample position whether to plot the
pixel at position (11, 11) or the one at (11, 12). Similarly,
Figure 3 shows a negative slope line path starting from the
left endpoint at pixel position (50, 50). In this one, do we
select the next pixel position as (51, 50) or as (51, 49).

II. METHOD
This section presents method of tutorial and testing

development that is used in this research. This research uses
Multimedia Development Life Cycle (MDLC)[6]. Authoring
is somewhat like making a feature film, a movie, and there
are many steps to the process. Multimedia Development Life
Cycle, a typical multimedia systems development, may
involve the following six major steps presented in Figure 1,
as follows:
1) Concept. The objective for the project is defined, and the

type of the application is specified. In the movies, this is
the stage at which the producer decides the kind of
movie to take and the subject to be.

2) Design. This is the process of deciding in detail what will
be in the project and how it will be presented. This stage

includes script writing, storyboarding, making
navigation structure and some design steps.

3) Obtaining of content material. During this stage all the
data, audio, video and images for the project are
collected in appropriate digital formats. In the course
material, this would be the production stage, where all
the scenes for the multimedia application are set up with
authoring tool Flash.

4) Assembly. In this step, the overall of the project is built,
the tutorial to make puzzle game is assembled, and any
interactive features are built. The tool for this stage of
authoring is Adobe Flash.

Figure 3. Multimedia development life cycle

5) Testing. During testing, the application is run and
checked to confirm that it performs exactly what the
author has intended.

6) Distribution. In this step, the application is reproduced
and delivered to end users for their use. The distribution
can be from either C-ROM or web site.

III. DISCUSSION

A. Multimedia Development
To illustrate how to develop multimedia application that

contains algorithm visualization in Adobe Flash, the first step
is to define the learning objectives [7]. The tutorial involves
many topics such as graphic systems, input and output
primitives, and graphic programming or scripting.

Figure 4. Navigation structur

The second step, developing a navigation structure and
storyboard of the Bresenham's line algorithm. First, it

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

423

ISSN 2964-5387 (online)
Vol 3, No 1, 2024

4

International Journal of Educational Technology and Artificial Intelligence

fresh implementation. Finally, it provides a
storyboard for identifying relationships between
the components. Navigation structure is essential
to design an interactive multimedia application
shown in Figure 3.

A. Scripting

The script of a button for calculating to discov-
er pixels, as follow:

on(release) {
	 dx=number((x2)-(x1));
	 dy=number((y2)-(y1));
	
	 if(Math.abs(dx)>Math.abs(dy)){
			 steps=Math.abs(dx);}
		 else if(Math.abs(dx)<Math.abs(dy)){
			 steps=Math.abs(dy);}
		 else {
			 steps=Math.abs(dx);}
			
		 xplus=dx/(steps);
		 yplus=dy/(steps);
		 x=x1;
		 y=y1;
		 myArray=new Array();
		
		 for(var i=0;i<steps;i++){
			 xa=1.0*x+xplus;
			 x=1.0*x+xplus;
			 myArray[i]=Math.round(xa);
		 }
		 outputx=myArray;
		 myArray=new Array();
		 for (var j=0;j<steps;j++){
			 ya=1.0*y+yplus;
			 y=1.0*y+yplus;
			 myArray[j]=Math.round(ya);
		 }
		 outputy=myArray;
		 output=»x «+x1+» «+outputx.join(«

«)+newline+»y «+y1+» «+outputy.join(« «);
}

The visualization is ganerated, as shown in
Figure 4. The script of a button for presenting vi-
sualization, as follow:

on (release) {
	 a=x1*10+100;
	 b=y1*(-10)+400;
	 c=x2*10+100;
	 d=y2*(-10)+400;

	 _root.createEmptyMovieClip(«garis»,1);
	 _root.garis.lineStyle(2);
	 _root.garis.moveTo(a,b);
	 _root.garis.lineTo(c,d);
}

Figure 4. DDA algorithm visualization

B. Limitations and issues

Some limitations and issues, which are:
-	 Floating point arithmetic: The DDA algo-

rithm requires floating-point arithmetic,
which can be slow on some systems. This
can be a problem when dealing with large
datasets.

-	 Limited precision: The use of floating-point
arithmetic can lead to limited precision in
some cases, especially when the slope of
the line is very steep or shallow.

-	 Round-off errors: Round-off errors can oc-
cur during calculations, which can lead to
inaccuracies in the generated line. This is
particularly true when the slope of the line
is close to 1.

-	 Inability to handle vertical lines: The DDA
algorithm is unable to handle vertical lines,
as the slope becomes undefined.

-	 Slow for complex curves: The DDA algo-
rithm is not suitable for generating com-
plex curves such as circles and ellipses, as it
requires a large number of line segments to
approximate these curves accurately.

-	 Aliasing: Aliasing occurs when the line seg-
ments generated using the DDA algorithm
do not accurately represent the line being

ISSN 2964-5387 (online)
Vol 3, No 1, 2024

5

International Journal of Educational Technology and Artificial Intelligence

drawn, resulting in a jagged appearance.
-	 Not suitable for thick lines: The DDA al-

gorithm generates thin lines, which can
be problematic when drawing thick lines,
as the line segments may overlap or leave
gaps.

IV. Conclusion

Through this paper the DDA Algorithm
visualization has been presented. Some details
about graphic programming that should be
learned by students have been described. The
visualization and the interactivity have been
well tested by the students at auniversity. Adobe
Animate is a timeline-based, authoring and
object-oriented programming tools can be used
to develop a scientific visualization..

V. Acknowledgement

The authors thank all the survey respondents
and participants willing to participate in this
research project consciously and voluntarily.

References

[1]	 D. Hearn and P. Baker, Computer Graphics.
Englewood Cliffs: Prentice Hall Internation-
al, Inc., 2006.

[2]	 H. Sutopo, “Bresenham’s Lines Algorithm
Visualization Using Flash,” Int. J. Comput.
Theory Eng., vol. 3, no. 3, pp. 422–426, 2011,
doi: 10.7763/ijcte.2011.v3.342.

[3]	 F. S. Hill Jr, Computer Graphics Using Open
GL. Upper Saddle River, NJ: Prentice Hall
International, Inc., 2001.

[4]	 R. Chun, Adobe Animate CC Classroom in a
Book. California: Adobe Press, 2019.

[5]	 F. N. Kumala, A. Ghufron, P. P. Astuti,
M. Crismonika, M. N. Hudha, and C. I. R.
Nita, “MDLC model for developing multi-
media e-learning on energy concept for pri-
mary school students,” J. Phys. Conf. Ser.,
vol. 1869, no. 1, 2021, doi: 10.1088/1742-
6596/1869/1/012068.

