Integrating Problem-Based Learning with Artificial Intelligence: Transforming Student-Centered Education in the Digital Era

Luka Novak a*, Ana Kovač b, Luka Zupančič c

- a* University of Ljubljana, Slovenia
- ^b University of Maribor, Slovenia
- ^c University of Primorska, Slovenia

Abstract

This article explores the integration of Problem-Based Learning (PBL) and Artificial Intelligence (AI) to create an innovative, student-centered educational model. In an era where critical thinking, creativity, and digital literacy are essential, combining PBL—a constructivist approach to learning—with AI technologies can enhance personalization, collaboration, and problem-solving in real-world contexts. The paper discusses the theoretical underpinnings of PBL and AI, identifies the pedagogical benefits of their synergy, and presents models for implementation in higher education. A case study approach is used to illustrate practical applications, followed by a discussion of challenges, ethical considerations, and future directions. This case study demonstrates the effectiveness of integrating problem-based learning (PBL) with artificial intelligence (AI) in a university-level environmental engineering course. By engaging students in a real-world challenge—designing a sustainable water system for a drought-prone region in Slovenia—the study revealed how AI-supported simulations and data-driven decision-making can deepen understanding of complex environmental issues. Students utilized AI tools to access region-specific data, simulate multiple climate scenarios, and evaluate the feasibility and resilience of solutions such as rainwater harvesting and retention ponds.

Keywords: Artificial Intelligence (AI), Problem-Based Learning (PBL), Student-Centered Learning, Environmental Engineering Education, Sustainable Water Systems, Simulation-Based Learning

I. Introduction

The convergence of 21st-century skills and technological advancements has redefined education. Traditional lecture-based instruction is increasingly being replaced by active learning strategies, particularly Problem-Based Learning (PBL) [1], which emphasizes inquiry, collaboration, and real-world problem-solving. Meanwhile, Artificial Intelligence (AI) is reshaping educational tools through adaptive systems, virtual tutors, and data-driven insights [2]. Integrating

Received 19 September 2024, Revised 21 Octobrer 2024, Accepted 12 December 2024, Available online 28 February 2025, Version of Record 12 December 2024.

these approaches presents a powerful opportunity to transform higher education into a dynamic, personalized, and impactful learning experience.

In today's rapidly evolving educational landscape, there is a growing demand for teaching approaches that promote critical thinking, creativity, collaboration, and digital literacy. Problem-Based Learning (PBL), rooted in constructivist theory, has proven effective in fostering these competencies through student-centered, inquiry-driven activities. Simultaneously, Artificial Intelligence (AI) is transforming the way information is accessed, processed, and applied in education, offering opportunities for personalization and real-time feedback. While both PBL and AI have individually demonstrated educational benefits, there remains lim-

^{*}Corresponding Author: Luka Novak, luknovak@gmail.com

ited research on their combined application, particularly in addressing complex, real-world problems in higher education contexts.

The primary objective of this study is to explore the integration of AI technologies within a PBL framework to enhance learning outcomes and engagement in university-level education. Specifically, the research aims to:

- 1. Analyze the theoretical and pedagogical foundations of combining AI and PBL.
- 2. Develop and implement an AI-supported PBL model in a real-world classroom setting.
- 3. Evaluate the impact of this integrated model through a case study in an environmental engineering course focused on sustainable water system design in Slovenia.

This research introduces a novel educational approach by combining AI-driven tools with problem-based learning in a structured, university-level curriculum. Unlike existing studies that examine AI or PBL in isolation, this work demonstrates their synergy through a hands-on case study, where students used AI to access regional climate data, model environmental scenarios, and design adaptive water solutions. The integration not only enhances cognitive engagement but also equips students with practical, data-informed decision-making skills. The study also contributes to the emerging discourse on ethical AI use in student-centered learning environments, highlighting its potential to transform educational practices across disciplines.

II. Theoretical Framework

A. Problem-Based Learning (PBL)

Rooted in constructivist theory, Problem-Based Learning (PBL) positions students as active participants in their educational journey, emphasizing the construction of knowledge through meaningful engagement with real-world problems. Instead of passively receiving information, students in a PBL environment are encouraged to take ownership of their learning by investigating complex, open-ended challenges that often lack a single correct answer. This approach nurtures self-directed learning, as students identify what they need to learn, seek out relevant resources, and assess their own understanding. It also fosters collaboration, as learners work in teams to discuss ideas, share perspectives, and co-construct solutions. Additionally, PBL strengthens critical thinking by requiring students to analyze information, evaluate alternatives, and justify their decisions. Through

this process, students not only gain deeper conceptual understanding but also develop the ability to apply knowledge in practical, often interdisciplinary contexts, preparing them for the complexities of real-life problem-solving.

B. Artificial Intelligence in Education

Artificial Intelligence (AI) encompasses a broad range of technologies, including machine learning, natural language processing (NLP), and expert systems, all of which are increasingly transforming the educational landscape. In the context of education, AI enables the creation of adaptive learning environments that dynamically respond to individual student performance, offering personalized content, pacing, and support. Intelligent tutoring systems use AI to simulate one-on-one instruction, guiding students through complex concepts while identifying and addressing misconceptions in real time.

Similarly, automated feedback systems can evaluate assignments, quizzes, or written work quickly and consistently, allowing students to receive immediate and targeted input that supports continuous improvement. These applications make learning not only more efficient but also more engaging and accessible, especially for diverse learners with varying backgrounds, abilities, and learning styles. As AI technologies continue to evolve, they hold significant potential to enhance educational equity, foster deeper learning, and support instructors in designing more effective and responsive teaching strategies.

C. The Synergy Between PBL and AI

The synergy between Problem-Based Learning (PBL) and Artificial Intelligence (AI) creates a powerful framework for modern education, where students engage in real-world problem solving supported by intelligent digital tools. PBL provides a student-centered approach that emphasizes inquiry, critical thinking, and collaboration, while AI enhances this process by delivering personalized learning experiences, real-time feedback, and data-driven insights. For example, AI can analyze a learner's progress and adapt instructional materials to fit their needs, helping students navigate complex problems more effectively. AI-powered tools like intelligent tutors, virtual assistants, and simulation platforms can guide learners through each stage of the PBL cycle—from defining the problem and researching solutions to testing hypotheses and reflecting on outcomes. This integration not only fosters deep, active learning but also equips students with 21st-century skills, such as digital literacy, systems thinking, and innovation. When combined, PBL and AI create an engaging, responsive, and future-ready learning environment that mirrors the complexity of real-world challenges [3], as shown in Table 1.

Table 1. Role of PBL enhanced by AI in several aspects

Aspect	Role of PBL	Enhanced by AI
Personalization Students explore based on interests AI adapts content and pace		
Collaboration	Group-based problem solving	AI-powered chatbots, peer matching
Assessment	Peer/self-evaluation	Automated, real-time feedback
Engagement	Authentic problem scenarios	Gamified AI simulations

By combining AI's capabilities with PBL's pedagogy, learners are not only solving problems but also learning how to learn through intelligent guidance and feedback.

D. Implementation Strategies

Implementation strategies for integrating Artificial Intelligence into Problem-Based Learning (PBL) focus on leveraging smart technologies to enhance the depth and personalization of the learning experience [4]. One key approach is AI-driven scenario generation, where tools such as ChatGPT or Jasper are employed to create dynamic, context-rich case studies that mirror real-world challenges across disciplines. These scenarios form the basis for student inquiry and exploration. Additionally, Intelligent Tutoring Systems (ITS)—like Squirrel AI and Carnegie Learning—offer guided support by tracking student progress and providing adaptive feedback through personalized problem-solving pathways. Learning analytics play a crucial role by allowing AI to analyze individual and group performance data, helping educators identify learning gaps, monitor engagement, and deliver targeted interventions. Moreover, the use of AI-powered virtual agents or avatars enhances interaction and reflection, as they act as digital mentors who assist students in brainstorming ideas, evaluating options, and refining their solutions. Together, these strategies make PBL more scalable, engaging, and responsive to diverse learner needs.

III. CASE STUDY

In a pilot study at a technology-focused university, environmental engineering students were tasked with designing a sustainable water system for a drought-prone region in Slovenia. AI tools supported the process by providing region-specific data and modeling drought conditions—drawing upon real hydrological and agricultural information. The village of Livold, lo-

cated in southeast Slovenia near Kočevje (population around 474), offers a suitable case context. It lies in a region characterized by seasonal water scarcity where the Rinža River often dries up during summer months, typical of the southern karst landscape

A. Regional Water Data and Climate Context

Slovenia receives an average annual rainfall of between 1,380 and 1,580 mm; however, the distribution of summer precipitation is uneven, with regions such as Primorska-including the Vipava Valley-and northeastern Slovenia being particularly vulnerable to drought. Since 1992, the country has faced several significant summer droughts, with severe consequences for agriculture. In one notable case, during the 2003 drought, tanker water deliveries were required to serve nearly 47,000 people, representing approximately 2.4% of the national population. Compounding this vulnerability is the limited irrigation infrastructure less than 4% of agriculturally viable land, or about 8,000 hectares, is equipped with irrigation systems. As a result, rural communities remain highly dependent on natural rainfall for their agricultural needs.

IV. RESEARCH METHOD

The research method used in this AI-supported problem-based learning study follows a structured, design-based research (DBR) approach integrated with simulation [5], as shown in Figure 1. It consists of six sequential phases:

- 1. Problem Identification: Students are introduced to a real-world challenge (e.g., designing a sustainable water system for a drought-prone area).
- 2. AI Tool Integration: Artificial intelligence is used to gather and analyze region-specific data, such as rainfall, streamflow, and community water use patterns.
- 3. Scenario Simulation: Using the data, students simulate multiple climate and usage scenarios to test the feasibility of water solutions.
- 4. System Design: Based on simulations, students propose sustainable systems like rainwater harvesting or retention ponds.
- 5. Impact Analysis: The environmental, technical, and socio-economic effects of proposed systems are analyzed.
- Student Reflection: Learners evaluate their decision-making process and the usefulness of AI tools in addressing complex environmental

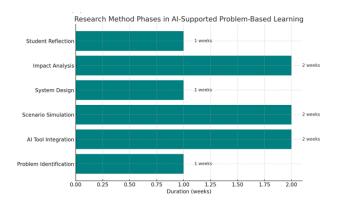


Figure 1. Design-based research (DBR) approach integrated with simulation

The chart above visually maps the time allocation for each phase, emphasizing an iterative and exploratory learning process common in problem-based and design-focused research. Let me know if you'd like a full textual methodology section for publication.

V. RESULTS AND DISCUSSION

The integration of Artificial Intelligence (AI) in the pilot project marks a significant step toward enhancing efficiency, decision-making, and adaptability within the program's scope. By embedding AI technologies, the project aims to automate data analysis, support predictive modeling, and enable real-time insights that inform planning and intervention strategies. This approach not only streamlines complex processes but also enhances the responsiveness of the system to environmental, social, or operational changes. As part of the pilot initiative, AI serves as a key enabler for innovation, helping to test scalable solutions in a controlled environment before broader implementation.

AI tools supported students by delivering:

- Localized hydrological data relevant to villages like Livold (e.g., seasonal flow of Rinža River; groundwater levels).
- Dynamic water balance modeling based on climate projections and soil moisture data paralleling national efforts like the SPON decision support system used across Slovenia for farm-level irrigation advice Wikipedia+8ec.europa.eu+8Wikipedia+8.
- Simulations of community water-demand scenarios under variable drought conditions, helping students evaluate design options such as community catchment systems, rainwater harvesting, or small-scale groundwater recharge.

The model outcomes demonstrated the students' ability to apply data-driven insights to real-world challenges. They proposed practical solutions such as rainwater harvesting systems and the construction of small retention ponds to capture runoff during wetter months, helping to mitigate the impact of seasonal water scarcity. Through simulations of storage requirements and distribution patterns under typical dry-season flows of the Rinža River, they identified periods when streamflow could fall below viable supply levels. Their impact analyses further highlighted potential benefits, including reduced reliance on rainwater alone, decreased energy demand for water pumping,

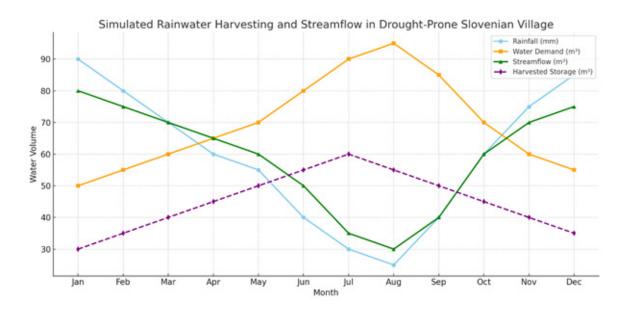


Figure 2. The simulation graph illustrates key hydrological and usage variables over a 12-month period in a drought-prone Slovenian village

and improved system resilience under projected future climate scenarios.

Figure 2 illustrates key hydrological and usage variables over a 12-month period in a drought-prone Slovenian village, providing critical insights for sustainable water system design. The monthly rainfall trend, depicted in light blue, shows a clear seasonal variation, with higher precipitation occurring in the winter months (January, November, December) and significantly reduced rainfall during the summer (particularly July and August). This seasonal rainfall pattern directly impacts the harvested rainwater storage levels, shown as a purple dashed line, which increase in the wetter months and gradually deplete during the dry season due to limited inflow and continuous usage. Meanwhile, the water demand, represented in orange, peaks during the summer (June to August), likely due to increased agricultural and domestic needs, creating a substantial gap between supply and demand. The streamflow from the Rinža River, marked in green, mirrors the rainfall trend, showing reduced availability in mid-year months when drought conditions are most likely to occur. This highlights the importance of rainwater harvesting and retention systems in balancing water deficits. By simulating these elements, students can assess the feasibility of proposed systems, identify critical supply shortages, and evaluate potential design responses to ensure resilience under projected climate conditions.

This visual helps students model system feasibility, identify supply-demand gaps, and design sustainable solutions with AI-supported data. Let me know if you'd like to add annotations or compare multiple climate scenarios.

Figure 3 shows an updated graph comparing the baseline climate scenario with a dry climate scenario (10–20% reduction in rainfall and streamflow), alongside water demand. An annotation highlights the lowest streamflow point in August, illustrating how drought conditions could exacerbate water shortages.

Figure 4. Monthly rainfall patterns under three distinct scenarios: a baseline condition, a moderate drought scenario (with a 20% reduction in rainfall), and a severe drought scenario (with a 40% reduction)

Two comparative simulation figures (Figure 4 and Figure 5) were generated to analyze climate scenario impacts on sustainable water system design. The first figure illustrates monthly rainfall patterns under three distinct scenarios: a baseline condition, a moderate drought scenario (with a 20% reduction in rainfall), and a severe drought scenario (with a 40% reduction). This visualization clearly demonstrates the decline in precipitation during the dry season, particularly from June to August, which becomes more pronounced under increasingly severe drought conditions. The second figure presents the net water balance-calculated as the difference between total water supply (streamflow plus stored rainwater) and monthly water demand. This graph includes annotations marking months where a water deficit occurs (i.e., where demand exceeds supply). Under the baseline scenario, only August falls into deficit, while in the moderate drought scenario, the deficit extends from July through

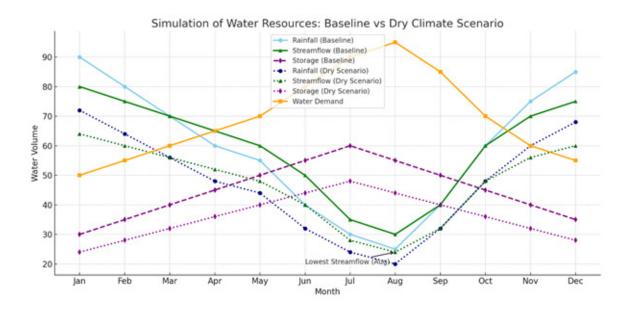


Figure 3. Updated graph comparing the baseline climate scenario

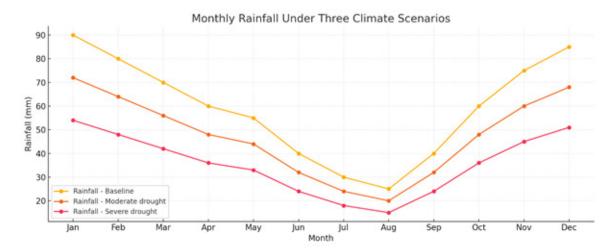


Figure 4. Monthly rainfall patterns under three distinct scenarios: a baseline condition, a moderate drought scenario (with a 20% reduction in rainfall), and a severe drought scenario (with a 40% reduction)

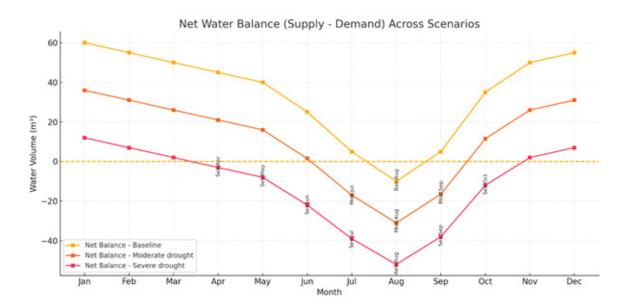


Figure 5. The net water balance—calculated as the difference between total water supply (streamflow plus stored rainwater) and monthly water demand

September. In the severe drought scenario, the imbalance worsens significantly, with deficits spanning from April to November. These visual comparisons provide valuable insights for students and planners evaluating the resilience of water systems and exploring adaptive strategies under climate stress.

VI. Conclusion

This case study demonstrates the effectiveness of integrating problem-based learning (PBL) with artificial intelligence (AI) in a university-level environmental engineering course. By engaging students in a real-world challenge—designing a sustainable water system for a drought-prone region in Slovenia—the study revealed how AI-supported

simulations and data-driven decision-making can deepen understanding of complex environmental issues. Students utilized AI tools to access region-specific data, simulate multiple climate scenarios, and evaluate the feasibility and resilience of solutions such as rainwater harvesting and retention ponds.

The process enhanced students' ability to critically analyze environmental systems, anticipate climate impacts, and develop adaptable infrastructure. It also fostered interdisciplinary skills, combining environmental science, data analysis, and systems thinking. Ultimately, the integration of AI into PBL not only improved student engagement and learning outcomes, but also illustrated the pedagogical value of emerging technologies in preparing learners for

sustainability-focused innovation.

Research and development efforts should prioritize the creation of open-source AI-powered Problem-Based Learning (AI-PBL) platforms specifically designed for educational contexts. These platforms would enable broader access and customization across different learning environments. Additionally, there is a need for longitudinal studies to evaluate the longterm impact of AI-PBL on student learning outcomes, providing evidence of effectiveness and areas for improvement. Expanding the adoption of AI-PBL across disciplines-including the humanities and health sciences—can help diversify its applications and relevance. Equally important is the development of ethical frameworks that guide the responsible use of AI in student-centered learning, ensuring transparency, equity, and data privacy...

REFERENCES

[1] F. Khairi, Y. Alhafidh, and F. Alhafidh, "Integrating AI Tools in Support of Problem-Based Learning in Higher Education: Strategies, Implications, and Future Directions Strategies for Integrating AI Tools in PBL Personaliz... Integrating AI Tools in Support of Problem-Based Learning in Higher Edu," no. April, 2024, doi: 10.13140/RG.2.2.33479.10405.

- [2] S. Singh, H. Kim, N. P. Singh, and S. H. Min, "AI-powered smart contracts in blockchain-based supply chain management," Comput. Ind. Eng., vol. 157, p. 107334, 2021.
- [3] H. Khosravi, K. Kitto, and J. M. Lodge, "Artificial intelligence in education: Promises and implications for teaching and learning," Comput. Educ. Artif. Intell., vol. 3, p. 100074, 2022, doi: https://doi.org/10.1016/j.caeai.2022.100074.
- [4] L. Chen, P. Chen, and Z. Lin, "Artificial intelligence in education: A review," IEEE Access, vol. 8, pp. 75264–75278, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2988510.
- [5] S. McKenney and T. C. Reeves, Conducting educational design research, 2nd ed. Routledge, 2021.